真正的大数据问题以及为什么只有机器学习才能解决它

为什么很多公司仍在努力构建从采集数据到获得洞察力的平稳运行的管道?他们希望投资和采用机器学习算法来分析数据,并做出商业预测。
但是,不可避免的是,他们应该意识到算法并不是魔法:如果采用的是垃圾数据,得出的就不会是一流的见解。因此,他们雇佣了一些数据科学家,但通常他们90%的时间都花在数据清洁上,只剩下10%的时间来完成分析工作。

这个过程的缺点还在于企业喜欢采用终端算法的机器学习。Tamr公

这几个机器学习核心问题,不会数学也能搞定!

如何用一种通俗易懂的方式阐述机器学习和人工智能领域最重要的话题?
人工智能已成为未来的趋势。汽车可以自动驾驶,计算机在围棋比赛上打败了人类,机器人也在抢走人类的工作。不久后,机器人将推翻人类的政府,奴役我们的后代……好吧,或许这并不会发生。但这样也回避了问题的实质:人工智能的极限是什么?

答案显而易见——这取决于对人工智能的定义。如果将人工智能定义为只会下围棋的电脑,那未来的围棋程序会比现在

细说文本挖掘:工具、任务、问题和解决方案

【51CTO.com快译】如今,世界的各个角落都在无时不刻地产生着大量的数据,而且其规模也在逐年增长。这些丰富的数据为人们提供了企业竞争的优势和管理资源的依据。我们通常需要通过各种自动化的选择和处理过程,来实现对于海量数据的挖掘与分类。
业界时常提到文本挖掘的概念,其本质是:一个从给定文本中获取高质量信息的自动化过程。它与其他类型数据分析的主要区别在于:其输入的数据并未经过任何方式的格式化。也