如何利用CLimF算法设计推荐系统

【51CTO.com原创稿件】自2010年开始,推荐系统领域出现了许多不同的排序学习的方法。所谓排序学习,指的是推荐系统机器学习算法优化的指标是推荐给用户的物品的排名,而不是具体的评分。排序学习解决问题的思路一般是首先提出一个需要优化的信息检索领域的指标,然后对其进行优化。因为这个指标通常是不光滑的,所以首先需要对这个指标进行近似,使得其成为一个光滑函数。信息检索的指标不同,产生了不同的算法。