为物联网/人工智能项目寻找投资商的优秀方式

解决一个问题,并验证,而不是描述

许多物联网项目的演示方式,大大降低了投资者和客户的吸引力。这将导致项目永远无法启动,即使启动了,也很可能会失败。
我们开发出一个五步系统,以帮助客户刺激人们对物联网项目的投资热情。获得投资将使项目更有可能启动并成功。
在开始之前,先介绍一些背景术语:

物联网(IoT):部署在物理世界以收集数据或控制某物的无线硬件和系统。
人工智能(AI):对物联网收集的数

一日千星的「机器学习系统设计指南」,这个英伟达小姐姐的项目火了

今年8月份,毕业于斯坦福、现就职于英伟达人工智能应用团队的一位小姐姐在推特上列出了十大优质的免费机器学习课程资源,并将它们串成了一条高效的学习路线。该课程资源现已获得8000多赞。近日,她又为读者带来了新的福利,这次是深度学习系统的设计教程。
将机器学习模型变为可以提供服务和AI能力的系统是近来备受关注的话题。ChipHuyen此次公开的深度学习系统设计教程是一篇8000字的长文,得到了广泛的

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

TensorFlow2.0正式版已发布一段时间,但目前系统性的相关教程还不够多。这个登上GitHub趋势榜的项目今日已获得700多赞,内容简单易懂,适合初学者和迁移到tf2.0的开发者使用。
深度学习中绕不开的便是对算法框架的实际使用了。如果没有娴熟的工程实践能力,很多优秀的算法设计就无法真正使用。TensorFlow2.0正式版已发布了一段时间,然而过去使用TensorFlow1.x版本的开

大盘点:8月Github上7个值得关注的数据科学项目

准备好在机器学习之路上再迈出一大步了吗?使用试验性数据集、流行的数据科学库和框架是个好的开始,但如果想在竞争中脱颖而出,必须有所突破,使自己与众不同。
最佳途径就是运用数据科学领域最新技术完成项目。想成为计算机视觉领域的专家吗?那就去学习最先进的目标检测算法。如果希望在自然语言处理(NLP)方面有所建树,那就学习Transformer模型的各种特性和分支。
重点是,要一直有所准备并乐于钻研最

18个挑战项目带你快速入门深度学习

AlphaGo大战李世乭之后,深度学习技术便在国内变得异常火。吸引了大批的技术人员争相学习,那么到底如何才能更快速的入门深度学习呢?
下面给大家介绍的18个挑战项目,通过实践动手带你快速入门深度学习!
1.北京市住房价格预测
本挑战运用线性回归的相关知识,来预测北京市的住房价格。

该数据集中共包含有12列。由于线性回归需要输入数值型数据,所以我们选用的特征包括「公交,写字楼,医院,商场

这个开源项目用Pytorch实现了17种强化学习算法

强化学习在过去的十年里取得了巨大的发展,如今已然是各大领域热捧的技术之一,今天,猿妹和大家推荐一个有关强化学习的开源项目。
这个开源项目是通过PyTorch实现了17种深度强化学习算法的教程和代码库,帮助大家在实践中理解深度RL算法。
完整的17个算法实现如下:

DeepQLearning(DQN)(Mnihetal.2013)
DQNwithFixedQTargets(Mnihetal.2

为什么85%的人工智能项目都失败了?

如今,人工智能(AI)已经广泛应用于人力资源、供应链、多层次营销等各个领域。很多企业在数据科学家身上投入了大量资金,以引领数据团队实现业务增长。风险和混乱都是人工智能项目失败的常见原因和主要因素。这是因为替换已经熟悉工作流程的员工是一个非常困难的决定。资金、培训、时间的投入是很多企业不容易接受的一大风险。

即使在选择了人工智能之后,由于缺乏合适的数据,问题也没有得到解决,算法无法正确处理不好

人工智能项目失败的6个原因

数据问题是企业的人工智能项目没有达到预期目标的主要原因。但是,如果企业能从错误中吸取教训并长期坚持,那么在人工智能方面的努力将会得到回报。

18个月前,Cooper公司为其客户服务代理商推出了智能推荐系统,以便为客户问题提供解决方案。该公司前身为Nationstar公司,是美国最大的非银行抵押贷款提供商,拥有380万客户,因此该项目被视为该公司一个令人关注的节省成本的项目。该公司首席信息官S

GitHub上Star最高的5个机器学习项目,最后一个可惜了!

机器学习正在高速发展当中,想要找到实用、先进的机器学习项目,首选就是GitHub,GitHub的Stars是评判一个项目受欢迎程度的标准之一。今天我们将和大家分享5个GitHub上关注度最高的5个机器学习开源项目

1)face-recognition 

世界上最简单的面部识别工具,它为Python和命令行提供了一个应用程序编程接口(API)。它可以被用来识别图像中的人脸。它使用dl

做机器学习项目数据不够?这里有5个不错的解决办法

许多开展人工智能项目的公司都具有出色的业务理念,但是当企业AI团队发现自己没有足够多的数据时,就会慢慢变得十分沮丧……不过,这个问题的解决方案还是有的。本文将简要介绍其中一些经笔者实践证明确实有效的办法。
数据稀缺的问题非常重要,因为数据是任何AI项目的核心,数据集的大小往往是影响项目表现优劣的一个重要因素。大多数情况下,与数据相关的问题,往往都是无法做出优秀人工智能项目的主要原因。